Molecular, biochemical and functional analysis of a novel and developmentally important fibrillar collagen (Hcol-I) in hydra.
نویسندگان
چکیده
The body wall of hydra (a member of the phylum Cnidaria) is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Previous studies have established that cell-ECM interactions are important for morphogenesis and cell differentiation in this simple metazoan. The ECM of hydra is particularly interesting because it represents a primordial form of matrix. Despite progress in our understanding of hydra ECM, we still know little about the nature of hydra collagens. In the current study we provide a molecular, biochemical and functional analysis of a hydra fibrillar collagen that has similarity to vertebrate type I and type II collagens. This fibrillar collagen has been named hydra collagen-I (Hcol-I) because of its structure and because it is the first ECM collagen to be identified in hydra. It represents a novel member of the collagen family. Similar to vertebrate type I and II collagens, Hcol-I contains an N-terminal propeptide-like domain, a triple helical domain containing typical Gly-X-Y repeats and a C-terminal propeptide domain. The overall identity to vertebrate fibrillar collagens is about 30%, while the identity of the C-terminal propeptide domain is 50%. Because the N-terminal propeptide domain is retained after post-translational processing, Hcol-I does not form thick fibers as seen in vertebrates. This was confirmed using transmission electron microscopy to study rotary shadow images of purified Hcol-I. In addition, absence of crucial lysine residues and an overall reduction in proline content, results in reduced crosslinking of fibrils and increased flexibility of the molecule, respectively. These structural changes in Hcol-I help to explain the flexible properties of hydra ECM. Immunocytochemical studies indicate that Hcol-I forms the 10 nm fibrils that comprise the majority of molecules in the central fibrous zone of hydra ECM. The central fibrous zone resides between the two subepithelial zones where hydra laminin is localized. While previous studies have shown that basal lamina components like laminin are expressed by the endoderm, in situ hybridisation studies show that Hcol-I mRNA expression is restricted to the ectoderm. Hcol-I expression is upregulated during head regeneration, and antisense studies using thio-oligonucleotides demonstrated that blocking the translation of Hcol-I leads to a reversible inhibition of head morphogenesis during this regenerative process. Taken in total, the data presented in this study indicate that Hcol-I is required for morphogensis in hydra and represents a novel fibrillar collagen whose structural characteristics help to explain the unique biophysical properties of hydra ECM. Interestingly, the structure of Hcol-I mimics what is seen in Ehlers-Danlos syndrome type VII in humans; an inherited pathological condition that leads to joint and skin abnormalities. Hcol-I therefore illustrates an adaptive trait in which the normal physiological situation in hydra translates into a pathological condition in humans.
منابع مشابه
Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human.
Collagens are often considered a metazoan hallmark, with the fibril-forming fibrillar collagens present from sponges to human. From evolutionary studies, three fibrillar collagen clades (named A, B, and C) have been defined and shown to be present in mammals, whereas the emergence of the A and B clades predates the protostome/deuterostome split. Moreover, several C clade fibrillar collagen chai...
متن کاملCollagen polymorphisms of the intervertebral disc.
The mechanical function and the collagen phenotype of the disc are complex, each a hybrid of elements of ligament and cartilage. In detail, the collagen properties are unique. Collagens I and II provide the bulk of the tissue fabric interwoven in opposing radial concentration gradients. From analysis of isolated cross-linked peptides, some degree of commingling of these major fibrillar collagen...
متن کاملEffects of Nerve Growth Factor, Insulin- Like Growth Factor-I and Collagen Gel on Peripheral Nerve Channel: Sensory, Functional and Regeneration Through Piezoelectric Electrophysiologicalal Study
Purpose: The limited availability of donor sites for nerve grafts continues to stimulate research toward finding suitable alternatives. Material and Methods: In the following study, the effects of direct administration of Nerve Growth Factor (NGF), Insulin - Like Growth Factor - I (IGF-I) , or / and collagen gel into Polyvinylidene Fluride (PVDF) gap was tested in a rat sciatic nerve model. A ...
متن کاملPhysiological type I collagen organization induces the formation of a novel class of linear invadosomes
Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induce...
متن کاملResearch Article: Isolation, characterization and biocompatibility evaluation of collagen from Thunnus tonggol skin
Acid-soluble collagen could be isolated from fish skin using acetic acid. In recent years, much attention has been paid to collagen from marine sources, mainly arising from the fact that there is no risk of contagious diseases. Moreover, by processing the fish, significant amounts of waste materials are produced which can be considered as a substitute for these collagen sources. Thunnus tonggol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 127 21 شماره
صفحات -
تاریخ انتشار 2000